Show simple item record

dc.contributor.authorLoop, Charlesen_US
dc.contributor.authorNießner, Matthiasen_US
dc.contributor.authorEisenacher, Christianen_US
dc.contributor.editorPeter Eisert and Joachim Hornegger and Konrad Polthieren_US
dc.date.accessioned2013-10-31T11:48:46Z
dc.date.available2013-10-31T11:48:46Z
dc.date.issued2011en_US
dc.identifier.isbn978-3-905673-85-2en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE/VMV/VMV11/263-268en_US
dc.description.abstractWhen rendering objects with hardware tessellation, back-facing patches should be culled as early as possible to avoid unnecessary surface evaluations, and setup costs for the tessellator and rasterizer. For dynamic objects the popular cone-of-normals approach is usually approximated using tangent and bitangent cones. This is faster to compute, but less effective. We present a novel approach using the Bézier convex hull of the parametric tangent plane. It is much more accurate, and by operating in clip space we are able to reduce the computational cost significantly. As our algorithm vectorizes well, we observe comparable test times with increased cull-rates.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleEffective Back-Patch Culling for Hardware Tessellationen_US
dc.description.seriesinformationVision, Modeling, and Visualization (2011)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • VMV11
    ISBN 978-3-905673-85-2

Show simple item record