Show simple item record

dc.contributor.authorKockentiedt, Stephenen_US
dc.contributor.authorToennies, Klausen_US
dc.contributor.authorGierke, Erhardten_US
dc.contributor.authorDziurowitz, Nicoen_US
dc.contributor.authorThim, Carmenen_US
dc.contributor.authorPlitzko, Sabineen_US
dc.contributor.editorMichael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard Preimen_US
dc.date.accessioned2013-11-08T10:35:10Z
dc.date.available2013-11-08T10:35:10Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905673-95-1en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE/VMV/VMV12/023-030en_US
dc.description.abstractEngineered nanoparticles have gained importance in recent years and will do so in the future, but their potential toxicity remains an open question. To better understand their effects on the human body, it is necessary to determine their concentration in ambient air. We propose a method to automatically detect nanoparticles in SEM images and differentiate engineered particles from other particles common in ambient air. The method reached Gmeans of 0.985, 0.779 and 0.820 for the classification against non-engineered particles of silver, titanium dioxide and zinc oxide respectively. This is comparable to manual classification.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.4.8 [Image Processing and Computer Vision]en_US
dc.subjectScene Analysisen_US
dc.subjectObject recognitionen_US
dc.titleAutomatic Detection and Recognition of Engineered Nanoparticles in SEM Imagesen_US
dc.description.seriesinformationVision, Modeling and Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • VMV12
    ISBN 978-3-905673-95-1

Show simple item record