dc.contributor.author | Herholz, Sebastian | en_US |
dc.contributor.author | Schairer, Timo | en_US |
dc.contributor.author | Schilling, Andreas | en_US |
dc.contributor.author | Straßer, Wolfgang | en_US |
dc.contributor.editor | Michael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard Preim | en_US |
dc.date.accessioned | 2013-11-08T10:35:23Z | |
dc.date.available | 2013-11-08T10:35:23Z | |
dc.date.issued | 2012 | en_US |
dc.identifier.isbn | 978-3-905673-95-1 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/PE/VMV/VMV12/071-078 | en_US |
dc.description.abstract | In this paper we present a new algorithm for real-time directional occlusion sampling. We combine the real-time capabilities of Screen Space Ambient Occlusion (SSAO) with the Spherical Harmonics (SH) representation of local directional occlusion. SH are well established and used in modern off-line rendering implementations such as PantaRay [PFHA10]. Through our combination we are able to transfer a method for realistic local directional occlusion effects from offline rendering to dynamic real-time applications. These local occlusion effects react to the environmental lighting situation and lead to dynamic and colored local occlusion shadows while only generating a small computational overhead compared to SSAO. Unlike other real-time directional occlusion algorithms such as Screen Space Direction Occlusion (SSDO) [RGS09] our occlusion sampling is separated from the actual lighting process and therefore can be easily integrated in existing SH lighting methods such as Irradiance Volumes [GSHG98]. We furthermore extend our algorithm to include first bounce indirect illumination effects. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | I.3.7 [Computer Graphics] | en_US |
dc.subject | Three Dimensional Graphics and Realism | en_US |
dc.subject | Color | en_US |
dc.subject | shading | en_US |
dc.subject | shadowing | en_US |
dc.subject | and texture | en_US |
dc.title | Screen Space Spherical Harmonic Occlusion | en_US |
dc.description.seriesinformation | Vision, Modeling and Visualization | en_US |