dc.contributor.author | Jetly, Vishrut | en_US |
dc.contributor.author | Ibayashi, Hikaru | en_US |
dc.contributor.author | Nakano, Aiichiro | en_US |
dc.contributor.editor | Sauvage, Basile | en_US |
dc.contributor.editor | Hasic-Telalovic, Jasminka | en_US |
dc.date.accessioned | 2022-04-22T07:54:23Z | |
dc.date.available | 2022-04-22T07:54:23Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-3-03868-171-7 | |
dc.identifier.issn | 1017-4656 | |
dc.identifier.uri | https://doi.org/10.2312/egp.20221003 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/egp20221003 | |
dc.description.abstract | We present sharpness-aware minimization (SAM) for fluid dynamics which can efficiently learn the plausible dynamics of liquid splashes. Due to its ability to achieve robust and generalizing solutions, SAM efficiently converges to a parameter set that predicts plausible dynamics of elusive liquid splashes. Our training scheme requires 6 times smaller number of epochs to converge and, 4 times shorter wall-clock time. Our result shows that sharpness of loss function has a close connection to the plausibility of fluid dynamics and suggests further applicability of SAM to machine learning based fluid simulation. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | CCS Concepts: Animation --> Fluid simulation; Methods and Applications --> Machine Learning; Neural Nets ; Optimization; Visualization --> Scientific Visualization | |
dc.subject | Animation | |
dc.subject | Fluid simulation | |
dc.subject | Methods and Applications | |
dc.subject | Machine Learning | |
dc.subject | Neural Nets | |
dc.subject | Optimization | |
dc.subject | Visualization | |
dc.subject | Scientific Visualization | |
dc.title | Splash in a Flash: Sharpness-aware Minimization for Efficient Liquid Splash Simulation | en_US |
dc.description.seriesinformation | Eurographics 2022 - Posters | |
dc.description.sectionheaders | Posters | |
dc.identifier.doi | 10.2312/egp.20221003 | |
dc.identifier.pages | 7-9 | |
dc.identifier.pages | 3 pages | |