Show simple item record

dc.contributor.authorMohan, Adityaen_US
dc.contributor.authorZhang, Jingen_US
dc.contributor.authorCozot, Rémien_US
dc.contributor.authorLoscos, Celineen_US
dc.contributor.editorSauvage, Basileen_US
dc.contributor.editorHasic-Telalovic, Jasminkaen_US
dc.date.accessioned2022-04-22T07:54:24Z
dc.date.available2022-04-22T07:54:24Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-171-7
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egp.20221004
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20221004
dc.description.abstractWe propose a CNN-based approach for reconstructing HDR images from just a single exposure. It predicts the saturated areas of LDR images and then blends the linearized input with the predicted outputs. Two loss functions are used: the Mean Absolute Error and the Multi-Scale Structural Similarity Index. The choice of these loss functions allows us to outperform previous algorithms in the reconstructed dynamic range. Once the network trained, we input multi-view images to it to output multi-view coherent images.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleConsistent Multi- and Single-View HDR-Image Reconstruction from Single Exposuresen_US
dc.description.seriesinformationEurographics 2022 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20221004
dc.identifier.pages11-12
dc.identifier.pages2 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License