dc.contributor.author | Mohan, Aditya | en_US |
dc.contributor.author | Zhang, Jing | en_US |
dc.contributor.author | Cozot, Rémi | en_US |
dc.contributor.author | Loscos, Celine | en_US |
dc.contributor.editor | Sauvage, Basile | en_US |
dc.contributor.editor | Hasic-Telalovic, Jasminka | en_US |
dc.date.accessioned | 2022-04-22T07:54:24Z | |
dc.date.available | 2022-04-22T07:54:24Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-3-03868-171-7 | |
dc.identifier.issn | 1017-4656 | |
dc.identifier.uri | https://doi.org/10.2312/egp.20221004 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/egp20221004 | |
dc.description.abstract | We propose a CNN-based approach for reconstructing HDR images from just a single exposure. It predicts the saturated areas of LDR images and then blends the linearized input with the predicted outputs. Two loss functions are used: the Mean Absolute Error and the Multi-Scale Structural Similarity Index. The choice of these loss functions allows us to outperform previous algorithms in the reconstructed dynamic range. Once the network trained, we input multi-view images to it to output multi-view coherent images. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Consistent Multi- and Single-View HDR-Image Reconstruction from Single Exposures | en_US |
dc.description.seriesinformation | Eurographics 2022 - Posters | |
dc.description.sectionheaders | Posters | |
dc.identifier.doi | 10.2312/egp.20221004 | |
dc.identifier.pages | 11-12 | |
dc.identifier.pages | 2 pages | |