SIG-based Curve Reconstruction
Abstract
We introduce a new method to compute the shape of an unstructured set of two-dimensional points. The algorithm exploits the to-date rarely used proximity-based graph called spheres-of-influence graph (SIG). We filter edges from the Delaunay triangulation belonging to the SIG as an initial graph and apply some additional processing plus elements from the Connect2D algorithm. This combination already shows improvements in curve reconstruction, yielding the best reconstruction accuracy compared to state-of-the-art algorithms from a recent comprehensive benchmark, and offers potential of further improvements.
BibTeX
@inproceedings {10.2312:egp.20221013,
booktitle = {Eurographics 2022 - Posters},
editor = {Sauvage, Basile and Hasic-Telalovic, Jasminka},
title = {{SIG-based Curve Reconstruction}},
author = {Marin, Diana and Ohrhallinger, Stefan and Wimmer, Michael},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {1017-4656},
ISBN = {978-3-03868-171-7},
DOI = {10.2312/egp.20221013}
}
booktitle = {Eurographics 2022 - Posters},
editor = {Sauvage, Basile and Hasic-Telalovic, Jasminka},
title = {{SIG-based Curve Reconstruction}},
author = {Marin, Diana and Ohrhallinger, Stefan and Wimmer, Michael},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {1017-4656},
ISBN = {978-3-03868-171-7},
DOI = {10.2312/egp.20221013}
}