Time Series AMR Data Representation for Out-of-core Interactive Visualization
Date
2022Author
Alexandre-Barff, Welcome
Deleau, Hervé
Sarton, Jonathan
Ledoux, Franck
Lucas, Laurent
Metadata
Show full item recordAbstract
Time-varying Adaptive Mesh Refinement (AMR) data have become an essential representation for 3D numerical simulations in many scientific fields. This observation is even more relevant considering that the data volumetry has increased significantly, reaching petabytes, hence largely exceeding the memory capacities of the most recent graphics hardware. Therefore, the question is how to access these massive data - AMR time series in particular - for interactive visualization purposes, without cracks, artifacts or latency. In this paper, we present a time-varying AMR data representation to enable a possible fully GPU-based out-of-core approach. We propose to convert the input data initially expressed as regular voxel grids into a set of AMR bricks uniquely identified by a 3D Hilbert's curve and store them in mass storage.
BibTeX
@inproceedings {10.2312:egp.20221014,
booktitle = {Eurographics 2022 - Posters},
editor = {Sauvage, Basile and Hasic-Telalovic, Jasminka},
title = {{Time Series AMR Data Representation for Out-of-core Interactive Visualization}},
author = {Alexandre-Barff, Welcome and Deleau, Hervé and Sarton, Jonathan and Ledoux, Franck and Lucas, Laurent},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {1017-4656},
ISBN = {978-3-03868-171-7},
DOI = {10.2312/egp.20221014}
}
booktitle = {Eurographics 2022 - Posters},
editor = {Sauvage, Basile and Hasic-Telalovic, Jasminka},
title = {{Time Series AMR Data Representation for Out-of-core Interactive Visualization}},
author = {Alexandre-Barff, Welcome and Deleau, Hervé and Sarton, Jonathan and Ledoux, Franck and Lucas, Laurent},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {1017-4656},
ISBN = {978-3-03868-171-7},
DOI = {10.2312/egp.20221014}
}