dc.description.abstract | Modern GPUs with their several hundred cores and more accessible programming models are becoming attractive devices for compute-intensive applications. They are particularly well suited for applications, such as image processing, where the end result is intended to be displayed via the graphics card. One of the more versatile and powerful graphics techniques is ray tracing. However, tracing each ray of light in a scene is very computational expensive and have traditionally been preprocessed on CPUs over hours, if not days. In this paper, Nvidia s new OptiX ray tracing engine is used to show how the power of modern graphics cards, such as the Nvidia Quadro FX 5800, can be harnessed to ray trace several scenes that represent real-life applications in real-time speeds ranging from 20.63 to 67.15 fps. Near-perfect speedup is demonstrated on dual GPUs for scenes with complex geometries. The impact on ray tracing of the recently announced Nvidia Fermi processor, is also discussed.Modern GPUs with their several hundred cores and more accessible programming models are becoming attractive devices for compute-intensive applications. They are particularly well suited for applications, such as image processing, where the end result is intended to be displayed via the graphics card. One of the more versatile and powerful graphics techniques is ray tracing. However, tracing each ray of light in a scene is very computational expensive and have traditionally been preprocessed on CPUs over hours, if not days. In this paper, Nvidia s new OptiX ray tracing engine is used to show how the power of modern graphics cards, such as the Nvidia Quadro FX 5800, can be harnessed to ray trace several scenes that represent real-life applications in real-time speeds ranging from 20.63 to 67.15 fps. Near-perfect speedup is demonstrated on dual GPUs for scenes with complex geometries. The impact on ray tracing of the recently announced Nvidia Fermi processor, is also discussed. | en_US |