Show simple item record

dc.contributor.authorMarshall, Carl S.en_US
dc.contributor.authorVembar, Deepak S.en_US
dc.contributor.authorGanguly, Sujoyen_US
dc.contributor.authorGuinier, Florenten_US
dc.contributor.editorHahmann, Stefanieen_US
dc.contributor.editorPatow, Gustavo A.en_US
dc.date.accessioned2022-04-22T11:46:01Z
dc.date.available2022-04-22T11:46:01Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-172-4
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egt.20221059
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egt20221059
dc.description.abstractApplying machine learning to improve graphics rendering or asset pipelines is challenging. Practicalities such as proprietary datasets, network retraining, and deployment issues make it difficult to translate published research into deployed solutions. In this course, industry practitioners at the forefront of this interdisciplinary field discuss and outline potential solutions.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePractical Machine Learning for Rendering: From Research to Deploymenten_US
dc.description.seriesinformationEurographics 2022 - Tutorials
dc.description.sectionheadersTutorials
dc.identifier.doi10.2312/egt.20221059


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License