Show simple item record

dc.contributor.authorKucher, Kostiantynen_US
dc.contributor.authorKerren, Andreasen_US
dc.contributor.authorParadis, Caritaen_US
dc.contributor.authorSahlgren, Magnusen_US
dc.contributor.editorTobias Isenberg and Filip Sadloen_US
dc.date.accessioned2016-06-09T09:33:32Z
dc.date.available2016-06-09T09:33:32Z
dc.date.issued2016en_US
dc.identifier.isbn978-3-03868-015-4en_US
dc.identifier.issn-en_US
dc.identifier.urihttp://dx.doi.org/10.2312/eurp.20161139en_US
dc.identifier.urihttps://diglib.eg.org:443/handle/10
dc.description.abstractThe automatic detection and classification of stance taking in text data using natural language processing and machine learning methods create an opportunity to gain insight about the writers' feelings and attitudes towards their own and other people's utterances. However, this task presents multiple challenges related to the training data collection as well as the actual classifier training. In order to facilitate the process of training a stance classifier, we propose a visual analytics approach called ALVA for text data annotation and visualization. Our approach supports the annotation process management and supplies annotators with a clean user interface for labeling utterances with several stance categories. The analysts are provided with a visualization of stance annotations which facilitates the analysis of categories used by the annotators. ALVA is already being used by our domain experts in linguistics and computational linguistics in order to improve the understanding of stance phenomena and to build a stance classifier for applications such as social media monitoring.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectH.5.2 [Information Interfaces and Presentation (e.g.en_US
dc.subjectHCI)]en_US
dc.subjectGeneralen_US
dc.subjectGraphical user interfaces (GUI)en_US
dc.subjectI.2.7 [Artificial Intelligence]en_US
dc.subjectNatural Language Processingen_US
dc.subjectText analysisen_US
dc.titleVisual Analysis of Text Annotations for Stance Classification with ALVAen_US
dc.description.seriesinformationEuroVis 2016 - Postersen_US
dc.description.sectionheadersPosteren_US
dc.identifier.doi10.2312/eurp.20161139en_US
dc.identifier.pages49-51en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record