Show simple item record

dc.contributor.authorAlakkari, Salaheddinen_US
dc.contributor.authorDingliana, Johnen_US
dc.contributor.editorTobias Isenberg and Filip Sadloen_US
dc.date.accessioned2016-06-09T09:33:37Z
dc.date.available2016-06-09T09:33:37Z
dc.date.issued2016en_US
dc.identifier.isbn978-3-03868-015-4en_US
dc.identifier.issn-en_US
dc.identifier.urihttp://dx.doi.org/10.2312/eurp.20161148en_US
dc.identifier.urihttps://diglib.eg.org:443/handle/10
dc.description.abstractWe investigate the use of Principal Component Analysis (PCA) for image-based volume rendering. We compute an eigenspace using training images, pre-rendered using a standard raycaster, from a spherically distributed range of camera positions. Our system is then able to synthesize novel views of the data set with minimal computation at run time. Results indicate that PCA is able to sufficiently learn the full volumetric model through a finite number of training images and generalize the computed eigenspace to produce high quality novel view images.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVolume Rendering Using Principal Component Analysisen_US
dc.description.seriesinformationEuroVis 2016 - Postersen_US
dc.description.sectionheadersPosteren_US
dc.identifier.doi10.2312/eurp.20161148en_US
dc.identifier.pages85-87en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record