dc.contributor.author | Derstroff, Adrian | en_US |
dc.contributor.author | Leistikow, Simon | en_US |
dc.contributor.author | Nahardani, Ali | en_US |
dc.contributor.author | Ebrahimi, Mahyasadat | en_US |
dc.contributor.author | Hoerr, Verena | en_US |
dc.contributor.author | Linsen, Lars | en_US |
dc.contributor.editor | Krone, Michael | en_US |
dc.contributor.editor | Lenti, Simone | en_US |
dc.contributor.editor | Schmidt, Johanna | en_US |
dc.date.accessioned | 2022-06-02T15:29:02Z | |
dc.date.available | 2022-06-02T15:29:02Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-3-03868-185-4 | |
dc.identifier.uri | https://doi.org/10.2312/evp.20221109 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/evp20221109 | |
dc.description.abstract | Biomarkers are measurable biological properties that allow for distinguishing subjects of different cohorts such as healthy vs. diseased. In the context of diagnosing diseases of the cardiovascular system, researchers aim - among others - at detecting biomarkers in the form of spatio-temporal regions of blood flow obtained by medical imaging or of derived hemodynamical parameters. As the search space for such biomarkers in time-varying volumetric multi-field data is extremely large, we present an interactive visual exploration system to support the analysis of the potential of spatio-temporal regions to discriminate cohorts. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Explorative Visual Analysis of Spatio-temporal Regions to Detect Hemodynamic Biomarker Candidates | en_US |
dc.description.seriesinformation | EuroVis 2022 - Posters | |
dc.description.sectionheaders | Posters | |
dc.identifier.doi | 10.2312/evp.20221109 | |
dc.identifier.pages | 15-17 | |
dc.identifier.pages | 3 pages | |