Show simple item record

dc.contributor.authorvan den Brandt, Astriden_US
dc.contributor.authorJonkheer, Eef M.en_US
dc.contributor.authorvan Workum, Dirk-Jan M.en_US
dc.contributor.authorSmit, Sandraen_US
dc.contributor.authorVilanova, Annaen_US
dc.contributor.editorKrone, Michaelen_US
dc.contributor.editorLenti, Simoneen_US
dc.contributor.editorSchmidt, Johannaen_US
dc.date.accessioned2022-06-02T15:29:03Z
dc.date.available2022-06-02T15:29:03Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-185-4
dc.identifier.urihttps://doi.org/10.2312/evp.20221112
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20221112
dc.description.abstractTo study the genetic sequence variation underlying traits of interest, the field of comparative genomics is moving away from analyses with single reference genomes to pangenomes; abstract representations of multiple genomes in a species or population. Pangenomes are beneficial because they represent a diverse set of genetic material and therefore avoid bias towards a single reference. While pangenomes allow for a complete map of the genetic variation, their large size and complex data structure hinder contextualization and interpretation of analysis results. Current visualization strategies fall short because they are created for single references or do not illustrate links to metadata. We present a work in progress version of a novel visual analytics strategy for pangenomic variant analysis. Our strategy is designed through an intensive involvement of genome scientists. The current design uniquely exploits interactive sorting, aggregation, and linkage relations from different perspectives of the data, to help the genome scientists explore and evaluate variant-trait associations in the context of multiple references and metadata.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleVisual Exploration of Genetic Sequence Variants in Pangenomesen_US
dc.description.seriesinformationEuroVis 2022 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/evp.20221112
dc.identifier.pages27-29
dc.identifier.pages3 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License