Show simple item record

dc.contributor.authorHumer, Christinaen_US
dc.contributor.authorElharty, Mohameden_US
dc.contributor.authorHinterreiter, Andreasen_US
dc.contributor.authorStreit, Marcen_US
dc.contributor.editorKrone, Michaelen_US
dc.contributor.editorLenti, Simoneen_US
dc.contributor.editorSchmidt, Johannaen_US
dc.date.accessioned2022-06-02T15:29:18Z
dc.date.available2022-06-02T15:29:18Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-185-4
dc.identifier.urihttps://doi.org/10.2312/evp.20221130
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20221130
dc.description.abstractExplanations of deep neural networks (DNNs) give users a better understanding of the inner workings and generalizability of a network. While the majority of research focuses on explanations for classification networks, in this work we focus on explainability for image segmentation networks. As a first contribution, we introduce a lightweight framework that allows generalizing certain attribution-based explanations, originally developed for classification networks, to also work for segmentation networks. The second contribution is a web-based tool that utilizes this framework and allows users to interactively explore segmentation networks. We demonstrate the approach using a self-trained mushroom segmentation network.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing --> Visual analytics; Computing methodologies --> Image segmentation
dc.subjectHuman centered computing
dc.subjectVisual analytics
dc.subjectComputing methodologies
dc.subjectImage segmentation
dc.titleInteractive Attribution-based Explanations for Image Segmentationen_US
dc.description.seriesinformationEuroVis 2022 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/evp.20221130
dc.identifier.pages99-101
dc.identifier.pages3 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License