Show simple item record

dc.contributor.authorKolár, Martinen_US
dc.contributor.authorHradiš, Michalen_US
dc.contributor.authorZemcík, Pavelen_US
dc.contributor.editorBiasotti, Silvia and Pintus, Ruggero and Berretti, Stefanoen_US
dc.date.accessioned2020-11-12T05:42:02Z
dc.date.available2020-11-12T05:42:02Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-124-3
dc.identifier.issn2617-4855
dc.identifier.urihttps://doi.org/10.2312/stag.20201238
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/stag20201238
dc.description.abstractEditing text in photographs requires the ability to find the same font, which is impossible in many settings, such as historical or manually painted text. We present a method of extracting the font from a single photographed word, without relying on the retrieval of similar fonts. A deep net extracts style information and constructs the font for all characters, enabling novel applications in image editing, font creation, and the addition of language-specific characters with diacritics to existing fonts. A qualitative user study shows that this method improves convincing font capture by over 500% over prior work.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectImage processing
dc.titleCapturing Fonts in the Wilden_US
dc.description.seriesinformationSmart Tools and Apps for Graphics - Eurographics Italian Chapter Conference
dc.description.sectionheadersTools
dc.identifier.doi10.2312/stag.20201238
dc.identifier.pages37-44


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record