Show simple item record

dc.contributor.authorAngelini, Mattiaen_US
dc.contributor.authorFerrulli, Vitoen_US
dc.contributor.authorBanterle, Francescoen_US
dc.contributor.authorCorsini, Massimilianoen_US
dc.contributor.authorPascali, Maria Antoniettaen_US
dc.contributor.authorCignoni, Paoloen_US
dc.contributor.authorGiorgi, Danielaen_US
dc.contributor.editorBiasotti, Silvia and Pintus, Ruggero and Berretti, Stefanoen_US
dc.date.accessioned2020-11-12T05:42:02Z
dc.date.available2020-11-12T05:42:02Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-124-3
dc.identifier.issn2617-4855
dc.identifier.urihttps://doi.org/10.2312/stag.20201239
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/stag20201239
dc.description.abstractWe present the ongoing effort to build the first benchmark dataset for aestethic prediction on 3D models. The dataset is built on top of Sketchfab, a popular platform for 3D content sharing. In our dataset, the visual 3D content is aligned with aestheticsrelated metadata: each 3D model is associated with a number of snapshots taken from different camera positions, the number of times the model has been viewed in-between its upload and its retrieval, the number of likes the model got, and the tags and comments received from users. The metadata provide precious supervisory information for data-driven research on 3D visual attractiveness and preference prediction. The paper contribution is twofold. First, we introduce an interactive platform for visualizing data about Sketchfab. We report a detailed qualitative and quantitative analysis of numerical scores (views and likes collected by 3D models) and textual information (tags and comments) for different 3D object categories. The analysis of the content of Sketchfab provided us the base for selecting a reasoned subset of annotated models. The second contribution is the first version of the ViDA 3D dataset, which contains the full set of content required for data-driven approaches to 3D aesthetic analysis. While similar datasets are available for images, to our knowledge this is the first attempt to create a benchmark for aestethic prediction for 3D models. We believe our dataset can be a great resource to boost research on this hot and far-from-solved problem.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectShape analysis
dc.titleViDA 3D: Towards a View-based Dataset for Aesthetic prediction on 3D modelsen_US
dc.description.seriesinformationSmart Tools and Apps for Graphics - Eurographics Italian Chapter Conference
dc.description.sectionheadersTools
dc.identifier.doi10.2312/stag.20201239
dc.identifier.pages45-55


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record