PC-GAU: PCA Basis of Scattered Gaussians for Shape Matching via Functional Maps
Abstract
Shape matching is a central problem in geometry processing applications, ranging from texture transfer to statistical shape analysis. The functional maps framework provides a compact representation of correspondences between discrete surfaces, which is then converted into point-wise maps required by real-world applications. The vast majority of methods based on functional maps involve the eigenfunctions of the Laplace-Beltrami Operator (LB) as the functional basis. A primary drawback of the LB basis is that its energy does not uniformly cover the surface. This fact gives rise to regions where the estimated correspondences are inaccurate, typically at tiny parts and protrusions. For this reason, state-of-the-art procedures to convert the functional maps (represented in the LB basis) into point-wise correspondences are often error-prone. We propose PCGAU, a new functional basis whose energy spreads on the whole shape more evenly than LB. As such, PC-GAU can replace the LB basis in existing shape matching pipelines. PC-GAU consists of the principal vectors obtained by applying Principal Component Analysis (PCA) to a dictionary of sparse Gaussian functions scattered on the surfaces. Through experimental evaluation of established benchmarks, we show that our basis produces more accurate point-wise maps —- compared to LB - when employed in the same shape-matching pipeline.
BibTeX
@inproceedings {10.2312:stag.20221253,
booktitle = {Smart Tools and Applications in Graphics - Eurographics Italian Chapter Conference},
editor = {Cabiddu, Daniela and Schneider, Teseo and Allegra, Dario and Catalano, Chiara Eva and Cherchi, Gianmarco and Scateni, Riccardo},
title = {{PC-GAU: PCA Basis of Scattered Gaussians for Shape Matching via Functional Maps}},
author = {Colombo, Michele and Boracchi, Giacomo and Melzi, Simone},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {2617-4855},
ISBN = {978-3-03868-191-5},
DOI = {10.2312/stag.20221253}
}
booktitle = {Smart Tools and Applications in Graphics - Eurographics Italian Chapter Conference},
editor = {Cabiddu, Daniela and Schneider, Teseo and Allegra, Dario and Catalano, Chiara Eva and Cherchi, Gianmarco and Scateni, Riccardo},
title = {{PC-GAU: PCA Basis of Scattered Gaussians for Shape Matching via Functional Maps}},
author = {Colombo, Michele and Boracchi, Giacomo and Melzi, Simone},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {2617-4855},
ISBN = {978-3-03868-191-5},
DOI = {10.2312/stag.20221253}
}
Except where otherwise noted, this item's license is described as Attribution 4.0 International License
Related items
Showing items related by title, author, creator and subject.
-
Rational Bézier Guarding
Khanteimouri, Payam; Mandad, Manish; Campen, Marcel (The Eurographics Association and John Wiley & Sons Ltd., 2022)We present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform ... -
VA + Embeddings STAR: A State-of-the-Art Report on the Use of Embeddings in Visual Analytics
Huang, Zeyang; Witschard, Daniel; Kucher, Kostiantyn; Kerren, Andreas (The Eurographics Association and John Wiley & Sons Ltd., 2023)Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term ''embedding'' when describing the computational approach. ... -
Teaching Game Programming in an Upper-level Computing Course Through the Development of a C++ Framework and Middleware
Hooper, Steffan; Wünsche, Burkhard C.; Denny, Paul; Luxton-Reilly, Andrew (The Eurographics Association, 2024)The game development industry has a programming skills shortage, with industry surveys often ranking game programming as the top skill-in-demand across small, mid-sized, and large triple-A (AAA) game studios. C++ programming ...