AirLens: Multi-Level Visual Exploration of Air Quality Evolution in Urban Agglomerations
Date
2022Author
Qu, Dezhan
Lv, Cheng
Lin, Yiming
Zhang, Huijie
Wang, Rong
Metadata
Show full item recordAbstract
The precise prevention and control of air pollution is a great challenge faced by environmental experts in recent years. Understanding the air quality evolution in the urban agglomeration is important for coordinated control of air pollution. However, the complex pollutant interactions between different cities lead to the collaborative evolution of air quality. The existing statistical and machine learning methods cannot well support the comprehensive analysis of the dynamic air quality evolution. In this study, we propose AirLens, an interactive visual analytics system that can help domain experts explore and understand the air quality evolution in the urban agglomeration from multiple levels and multiple aspects. To facilitate the cognition of the complex multivariate spatiotemporal data, we first propose a multi-run clustering strategy with a novel glyph design for summarizing and understanding the typical pollutant patterns effectively. On this basis, the system supports the multi-level exploration of air quality evolution, namely, the overall level, stage level and detail level. Frequent pattern mining, city community extraction and useful filters are integrated into the system for discovering significant information comprehensively. The case study and positive feedback from domain experts demonstrate the effectiveness and usability of AirLens.
BibTeX
@article {10.1111:cgf.14535,
journal = {Computer Graphics Forum},
title = {{AirLens: Multi-Level Visual Exploration of Air Quality Evolution in Urban Agglomerations}},
author = {Qu, Dezhan and Lv, Cheng and Lin, Yiming and Zhang, Huijie and Wang, Rong},
year = {2022},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14535}
}
journal = {Computer Graphics Forum},
title = {{AirLens: Multi-Level Visual Exploration of Air Quality Evolution in Urban Agglomerations}},
author = {Qu, Dezhan and Lv, Cheng and Lin, Yiming and Zhang, Huijie and Wang, Rong},
year = {2022},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14535}
}
Collections
Related items
Showing items related by title, author, creator and subject.
-
Visualizing for the Non-Visual: Enabling the Visually Impaired to Use Visualization
Choi, Jinho; Jung, Sanghun; Park, Deok Gun; Choo, Jaegul; Elmqvist, Niklas (The Eurographics Association and John Wiley & Sons Ltd., 2019)The majority of visualizations on the web are still stored as raster images, making them inaccessible to visually impaired users. We propose a deep-neural-network-based approach that automatically recognizes key elements ... -
Query by Visual Words: Visual Search for Scatter Plot Visualizations
Shao, Lin; Schleicher, Timo; Schreck, Tobias (The Eurographics Association, 2016)Finding interesting views in large collections of data visualizations, e.g., scatter plots, is challenging. Recently, ranking views based on heuristic quality measures has been proposed. However, quality measures may fail ... -
Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics
Badam, Sriram Karthik; Elmqvist, Niklas; Fekete, Jean-Daniel (The Eurographics Association and John Wiley & Sons Ltd., 2017)Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then ...