Show simple item record

dc.contributor.authorQu, Dezhanen_US
dc.contributor.authorLv, Chengen_US
dc.contributor.authorLin, Yimingen_US
dc.contributor.authorZhang, Huijieen_US
dc.contributor.authorWang, Rongen_US
dc.contributor.editorBorgo, Ritaen_US
dc.contributor.editorMarai, G. Elisabetaen_US
dc.contributor.editorSchreck, Tobiasen_US
dc.date.accessioned2022-06-03T06:06:08Z
dc.date.available2022-06-03T06:06:08Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14535
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14535
dc.description.abstractThe precise prevention and control of air pollution is a great challenge faced by environmental experts in recent years. Understanding the air quality evolution in the urban agglomeration is important for coordinated control of air pollution. However, the complex pollutant interactions between different cities lead to the collaborative evolution of air quality. The existing statistical and machine learning methods cannot well support the comprehensive analysis of the dynamic air quality evolution. In this study, we propose AirLens, an interactive visual analytics system that can help domain experts explore and understand the air quality evolution in the urban agglomeration from multiple levels and multiple aspects. To facilitate the cognition of the complex multivariate spatiotemporal data, we first propose a multi-run clustering strategy with a novel glyph design for summarizing and understanding the typical pollutant patterns effectively. On this basis, the system supports the multi-level exploration of air quality evolution, namely, the overall level, stage level and detail level. Frequent pattern mining, city community extraction and useful filters are integrated into the system for discovering significant information comprehensively. The case study and positive feedback from domain experts demonstrate the effectiveness and usability of AirLens.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Human-centered computing --> Visual analytics; Geographic visualization; Information visualization
dc.subjectHuman centered computing
dc.subjectVisual analytics
dc.subjectGeographic visualization
dc.subjectInformation visualization
dc.titleAirLens: Multi-Level Visual Exploration of Air Quality Evolution in Urban Agglomerationsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersLife Sciences and Urbanism
dc.description.volume41
dc.description.number3
dc.identifier.doi10.1111/cgf.14535
dc.identifier.pages223-234
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 3
    EuroVis 2022 - Conference Proceedings

Show simple item record