Show simple item record

dc.contributor.authorFatahalian, Kayvonen_US
dc.contributor.authorLuong, Edwarden_US
dc.contributor.authorBoulos, Solomonen_US
dc.contributor.authorAkeley, Kurten_US
dc.contributor.authorMark, William R.en_US
dc.contributor.authorHanrahan, Paten_US
dc.contributor.editorDavid Luebke and Philipp Slusalleken_US
dc.date.accessioned2013-10-29T15:48:16Z
dc.date.available2013-10-29T15:48:16Z
dc.date.issued2009en_US
dc.identifier.isbn978-1-60558-603-8en_US
dc.identifier.issn2079-8687en_US
dc.identifier.urihttp://dx.doi.org/10.1145/1572769.1572780en_US
dc.description.abstractCurrent GPUs rasterize micropolygons (polygons approximately one pixel in size) inefficiently. We design and analyze the costs of three alternative data-parallel algorithms for rasterizing micropolygon workloads for the real-time domain. First, we demonstrate that efficient micropolygon rasterization requires parallelism across many polygons, not just within a single polygon. Second, we produce a data-parallel implementation of an existing stochastic rasterization algorithm by Pixar, which is able to produce motion blur and depth-of-field effects. Third, we provide an algorithm that leverages interleaved sampling for motion blur and camera defocus. This algorithm outperforms Pixar s algorithm when rendering objects undergoing moderate defocus or high motion and has the added benefit of predictable performance.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleData-Parallel Rasterization of Micropolygons with Defocus and Motion Bluren_US
dc.description.seriesinformationHigh-Performance Graphicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record