Show simple item record

dc.contributor.authorAbdellah, Marwanen_US
dc.contributor.authorCantero, Juan José Garcíaen_US
dc.contributor.authorFoni, Alessandroen_US
dc.contributor.authorGuerrero, Nadir Románen_US
dc.contributor.authorBoci, Elvisen_US
dc.contributor.authorSchürmann, Felixen_US
dc.contributor.editorPeter Vangorpen_US
dc.contributor.editorMartin J. Turneren_US
dc.date.accessioned2022-08-16T08:51:36Z
dc.date.available2022-08-16T08:51:36Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-188-5
dc.identifier.urihttps://doi.org/10.2312/cgvc.20221168
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/cgvc20221168
dc.description.abstractNeurons are characterized by thin and long interleaving arborizations in which creating accurate mesh models of their cellular membranes is challenging. While union operators are central for CAD/CAM modeling and computer graphics applications, their applicability to neuronal mesh generation has not been explored. In this work, we present the results of exploring the effectiveness of using union operators to generate high fidelity surface meshes of spiny neurons from their morphological traces. To improve the visual realism of the resulting models, a plausible shape of the cell body is also realized with implicit surfaces (metaballs). The algorithm is implemented in Blender based on its Python API and is integrated into NeuroMorphoVis, a neuroscience-specific framework for visualization and analysis of neuronal morphologies. Our method is applied to a dataset consisting of more than 600 neurons representing 60 morphological types reconstructed from the neocortex of a juvenile rat. The performance of our implementation is quantitatively analyzed, and the results are qualitatively compared to previous implementation. The resulting meshes are applicable in multiple contexts including visualization and analysis of full compartmental simulations and generation of high quality multimedia content for scientific visualization and visual computing (Figure 1).en_US
dc.publisherThe Eurographics Associationen_US
dc.titleMeshing of Spiny Neuronal Morphologies using Union Operatorsen_US
dc.description.seriesinformationComputer Graphics and Visual Computing (CGVC)
dc.description.sectionheadersComputer Graphics
dc.identifier.doi10.2312/cgvc.20221168
dc.identifier.pages19-26
dc.identifier.pages8 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record