Show simple item record

dc.contributor.authorBormann, Pascalen_US
dc.contributor.authorDorra, Tobiasen_US
dc.contributor.authorStahl, Bastianen_US
dc.contributor.authorFellner, Dieter W.en_US
dc.contributor.editorPeter Vangorpen_US
dc.contributor.editorMartin J. Turneren_US
dc.date.accessioned2022-08-16T08:51:37Z
dc.date.available2022-08-16T08:51:37Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-188-5
dc.identifier.urihttps://doi.org/10.2312/cgvc.20221173
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/cgvc20221173
dc.description.abstractWe introduce a software system that is capable of indexing point cloud data in real-time as it is being captured by a LiDAR (Light Detection and Ranging) sensor. Our system extends the popular MNO (modifiable nested octree) structure so that it can be built progressively without knowing the bounding box of the point cloud. Using a task-based parallel algorithm incoming points are continuously processed and distributed to the octree nodes using grid-based sampling. Different task priority functions enable prioritization of either high point throughput or low latency. We provide a reference implementation of this system and evaluate it using both a synthetic and a real-world test scenario. The synthetic test demonstrates good scalability up to 16 threads, with maximum point throughputs of up to 1.8 million points per second. These numbers are verified on a sensor system using a Velodyne VLP-16 LiDAR sensor, where our system is able to index all data produced by the scanner in real-time.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCCS Concepts: Information systems → Geographic information systems; Mobile information processing systems; Data structures; Computing methodologies → Point-based models; Vector / streaming algorithms
dc.subjectInformation systems → Geographic information systems
dc.subjectMobile information processing systems
dc.subjectData structures
dc.subjectComputing methodologies → Point
dc.subjectbased models
dc.subjectVector / streaming algorithms
dc.titleReal-time Indexing of Point Cloud Data During LiDAR Captureen_US
dc.description.seriesinformationComputer Graphics and Visual Computing (CGVC)
dc.description.sectionheadersVisual Computing and Applications
dc.identifier.doi10.2312/cgvc.20221173
dc.identifier.pages65-73
dc.identifier.pages9 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record