Show simple item record

dc.contributor.authorEhm, Viktoriaen_US
dc.contributor.authorCremers, Danielen_US
dc.contributor.authorBernard, Florianen_US
dc.contributor.editorSingh, Gurpriten_US
dc.contributor.editorChu, Mengyu (Rachel)en_US
dc.date.accessioned2023-05-03T06:05:54Z
dc.date.available2023-05-03T06:05:54Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-211-0
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egp.20231028
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20231028
dc.description.abstractFlows in networks (or graphs) play a significant role in numerous computer vision tasks. The scalar-valued edges in these graphs often lead to a loss of information and thereby to limitations in terms of expressiveness. For example, oftentimes highdimensional data (e.g. feature descriptors) are mapped to a single scalar value (e.g. the similarity between two feature descriptors). To overcome this limitation, we propose a novel formalism for non-separable multi-dimensional network flows. By doing so, we enable an automatic and adaptive feature selection strategy - since the flow is defined on a per-dimension basis, the maximizing flow automatically chooses the best matching feature dimensions. As a proof of concept, we apply our formalism to the multi-object tracking problem and demonstrate that our approach outperforms scalar formulations on the MOT16 benchmark in terms of robustness to noise.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Theory of computation -> Design and analysis of algorithms; Theory and algorithms for application domains
dc.subjectTheory of computation
dc.subjectDesign and analysis of algorithms
dc.subjectTheory and algorithms for application domains
dc.titleNon-Separable Multi-Dimensional Network Flows for Visual Computingen_US
dc.description.seriesinformationEurographics 2023 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20231028
dc.identifier.pages15-16
dc.identifier.pages2 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License